Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Open Forum Infect Dis ; 10(2): ofad001, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2236756

ABSTRACT

Background: The limited variation observed among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consensus sequences makes it difficult to reconstruct transmission linkages in outbreak settings. Previous studies have recovered variation within individual SARS-CoV-2 infections but have not yet measured the informativeness of within-host variation for transmission inference. Methods: We performed tiled amplicon sequencing on 307 SARS-CoV-2 samples, including 130 samples from 32 individuals in 14 households and 47 longitudinally sampled individuals, from 4 prospective studies with household membership data, a proxy for transmission linkage. Results: Consensus sequences from households had limited diversity (mean pairwise distance, 3.06 single-nucleotide polymorphisms [SNPs]; range, 0-40). Most (83.1%, 255 of 307) samples harbored at least 1 intrahost single-nucleotide variant ([iSNV] median, 117; interquartile range [IQR], 17-208), above a minor allele frequency threshold of 0.2%. Pairs in the same household shared significantly more iSNVs (mean, 1.20 iSNVs; 95% confidence interval [CI], 1.02-1.39) than did pairs in different households infected with the same viral clade (mean, 0.31 iSNVs; 95% CI, .28-.34), a signal that decreases with increasingly stringent minor allele frequency thresholds. The number of shared iSNVs was significantly associated with an increased odds of household membership (adjusted odds ratio, 1.35; 95% CI, 1.23-1.49). However, the poor concordance of iSNVs detected across sequencing replicates (24.8% and 35.0% above a 0.2% and 1% threshold) confirms technical concerns that current sequencing and bioinformatic workflows do not consistently recover low-frequency within-host variants. Conclusions: Shared within-host variation may augment the information in consensus sequences for predicting transmission linkages. Improving sensitivity and specificity of within-host variant identification will improve the informativeness of within-host variation.

2.
Clin Infect Dis ; 75(1): e314-e321, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2188494

ABSTRACT

BACKGROUND: An immunodiagnostic assay that sensitively detects a cell-mediated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed for epidemiological investigation and for clinical assessment of T- cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. METHODS: The performance of a whole blood interferon-gamma (IFN-γ) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific T cells was evaluated in coronavirus disease 2019 (COVID-19) convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. RESULTS: The overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI]: 79.0-89.0) and 86.6% (123/142; 95% CI: 80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI: 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI: 64.4-89.2) at 10 months post-infection (P < .01). The IFN-γ response remained relatively robust at 10 months post-infection (3.8 vs 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of + 50% (95% CI: +25.4 to +74.6) and +21.7% (95% CI: +9.23 to +42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. CONCLUSIONS: The SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Interferon-gamma Release Tests , Sensitivity and Specificity
3.
Emerg Med J ; 39(7): 561-562, 2022 07.
Article in English | MEDLINE | ID: covidwho-1902035

Subject(s)
Triage , Humans , Pain Measurement
4.
JAMA Netw Open ; 5(2): e2148988, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1694842

ABSTRACT

Importance: There is an urgent need to assess the feasibility of COVID-19 surveillance measures in educational settings. Objective: To assess whether young children can feasibly self-collect SARS-CoV-2 samples for surveillance testing over the course of an academic year. Design, Setting, and Participants: This prospective pilot cohort study was conducted from September 10, 2020, to June 10, 2021, at a K-8 school in San Mateo County, California. The research consisted of quantitative data collection efforts: (1) demographic data collected, (2) student sample self-collection error rates, and (3) student sample self-collection time durations. Students were enrolled in a hybrid learning model, a teaching model in which students were taught in person and online, with students having the option to attend virtually as needed. Data were collected under waiver of consent from students participating in weekly SARS-CoV-2 testing. Main Outcomes and Measures: Errors over time for self-collection of nasal swabs such as contaminated swabs and inadequate or shallow swabbing; time taken for sample collection. Results: Of 296 participants, 148 (50.0%) were boys and 148 (50.0%) were girls. A total of 87 participants (29.2%) identified as Asian; 2 (0.6%), Black or African American; 13 (4.4%), Hispanic/Latinx; 103 (34.6%), non-Hispanic White; 87 (29.2%), multiracial; and 6 (2.0%), other. The median school grade was fourth grade. From September 2020 to March 2021, a total of 4203 samples were obtained from 221 students on a weekly basis, while data on error rates were collected. Errors occurred in 2.7% (n = 107; 95% CI, 2.2%-3.2%) of student encounters, with the highest rate occurring on the first day of testing (20 [10.2%]). There was an overall decrease in error rates over time. From April to June 2021, a total of 2021 samples were obtained from 296 students on a weekly basis while data on encounter lengths were collected. Between April and June 2021, 193 encounters were timed. The mean duration of each encounter was 70 seconds (95% CI, 66.4-73.7 seconds). Conclusions and Relevance: Mastery of self-collected lower nasal swabs is possible for children 5 years and older. Testing duration can be condensed once students gain proficiency in testing procedures. Scalability for larger schools is possible if consideration is given to the resource-intensive nature of the testing and the setting's weather patterns.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2 , Self-Testing , COVID-19/pathology , COVID-19/prevention & control , California , Child , Child, Preschool , Cohort Studies , Epidemics , Feasibility Studies , Female , Humans , Male , Population Surveillance , Prospective Studies , Specimen Handling
5.
Acad Pediatr ; 22(4): 671-679, 2022.
Article in English | MEDLINE | ID: covidwho-1633586

ABSTRACT

OBJECTIVES: The purpose of our study is to evaluate the feasibility and reliability of a comprehensive set of preventive measures in limiting secondary transmission of COVID-19 in schools. METHODS: A prospective cohort study was conducted to evaluate SARS-CoV-2 transmission in an independent K-8 school in San Mateo County, California. The research was conducted between September 14, 2020 through March 22, 2021 and consisted of: 1) demographic and epidemiological questionnaires; 2) daily symptom reporting; 3) weekly RT-PCR testing; and 4) periodic on-site qualitative observations. RESULTS: One hundred eighty (79%) students and 63 (74%) on-site staff/contractors were enrolled. Participants reported symptoms in 144 (<1%) daily surveys of the 19,409 collected. Among those who reported symptoms and exposures, none tested positive during the 22-week study period. Of all participants, a total of 6 tested positive for SARS-CoV-2 at least once by RT-PCR; all were asymptomatic at time of testing. No in-school transmission occurred. Mask adherence was high among all grades, and incidents of improper mask use mostly occurred during noninstruction time. Physical distancing was well-enforced during class time and snack breaks, although adherence during noninstruction time waned as the school year progressed. CONCLUSIONS: Our comprehensive, prospective study following COVID-19 transmission over 22 weeks in a K-8 school demonstrates that: 1) surveillance testing is important for detecting asymptomatic infections in schools; 2) monitoring symptoms may not be necessary and/or sufficient for COVID-19; and 3) younger children can adhere to key mitigation measures (eg, masking) which have the potential to limit transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Pilot Projects , Prospective Studies , Reproducibility of Results , Schools
SELECTION OF CITATIONS
SEARCH DETAIL